Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis.

Identifieur interne : 001553 ( Main/Exploration ); précédent : 001552; suivant : 001554

Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis.

Auteurs : Hehe Wang [États-Unis] ; Asela Wijeratne ; Saranga Wijeratne ; Sungwoo Lee ; Christopher G. Taylor ; Steven K. St Martin ; Leah Mchale ; Anne E. Dorrance

Source :

RBID : pubmed:22925529

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar 'Conrad' that contributes to the expression of partial resistance to multiple P. sojae isolates.

RESULTS

In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible ('Sloan') genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance.

CONCLUSIONS

These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.


DOI: 10.1186/1471-2164-13-428
PubMed: 22925529
PubMed Central: PMC3443417


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis.</title>
<author>
<name sortKey="Wang, Hehe" sort="Wang, Hehe" uniqKey="Wang H" first="Hehe" last="Wang">Hehe Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Wooster, OH 44691</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wijeratne, Asela" sort="Wijeratne, Asela" uniqKey="Wijeratne A" first="Asela" last="Wijeratne">Asela Wijeratne</name>
</author>
<author>
<name sortKey="Wijeratne, Saranga" sort="Wijeratne, Saranga" uniqKey="Wijeratne S" first="Saranga" last="Wijeratne">Saranga Wijeratne</name>
</author>
<author>
<name sortKey="Lee, Sungwoo" sort="Lee, Sungwoo" uniqKey="Lee S" first="Sungwoo" last="Lee">Sungwoo Lee</name>
</author>
<author>
<name sortKey="Taylor, Christopher G" sort="Taylor, Christopher G" uniqKey="Taylor C" first="Christopher G" last="Taylor">Christopher G. Taylor</name>
</author>
<author>
<name sortKey="St Martin, Steven K" sort="St Martin, Steven K" uniqKey="St Martin S" first="Steven K" last="St Martin">Steven K. St Martin</name>
</author>
<author>
<name sortKey="Mchale, Leah" sort="Mchale, Leah" uniqKey="Mchale L" first="Leah" last="Mchale">Leah Mchale</name>
</author>
<author>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22925529</idno>
<idno type="pmid">22925529</idno>
<idno type="doi">10.1186/1471-2164-13-428</idno>
<idno type="pmc">PMC3443417</idno>
<idno type="wicri:Area/Main/Corpus">001455</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001455</idno>
<idno type="wicri:Area/Main/Curation">001455</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001455</idno>
<idno type="wicri:Area/Main/Exploration">001455</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis.</title>
<author>
<name sortKey="Wang, Hehe" sort="Wang, Hehe" uniqKey="Wang H" first="Hehe" last="Wang">Hehe Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Wooster, OH 44691</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wijeratne, Asela" sort="Wijeratne, Asela" uniqKey="Wijeratne A" first="Asela" last="Wijeratne">Asela Wijeratne</name>
</author>
<author>
<name sortKey="Wijeratne, Saranga" sort="Wijeratne, Saranga" uniqKey="Wijeratne S" first="Saranga" last="Wijeratne">Saranga Wijeratne</name>
</author>
<author>
<name sortKey="Lee, Sungwoo" sort="Lee, Sungwoo" uniqKey="Lee S" first="Sungwoo" last="Lee">Sungwoo Lee</name>
</author>
<author>
<name sortKey="Taylor, Christopher G" sort="Taylor, Christopher G" uniqKey="Taylor C" first="Christopher G" last="Taylor">Christopher G. Taylor</name>
</author>
<author>
<name sortKey="St Martin, Steven K" sort="St Martin, Steven K" uniqKey="St Martin S" first="Steven K" last="St Martin">Steven K. St Martin</name>
</author>
<author>
<name sortKey="Mchale, Leah" sort="Mchale, Leah" uniqKey="Mchale L" first="Leah" last="Mchale">Leah Mchale</name>
</author>
<author>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosomes, Plant (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (parasitology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soybeans (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Ubiquitination (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Haplotypes (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (parasitologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Soja (génétique)</term>
<term>Ubiquitination (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Racines de plante</term>
<term>Soja</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Gene Expression Regulation, Plant</term>
<term>Haplotypes</term>
<term>Host-Parasite Interactions</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
<term>Sequence Analysis, DNA</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Chromosomes de plante</term>
<term>Haplotypes</term>
<term>Interactions hôte-parasite</term>
<term>Locus de caractère quantitatif</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Ubiquitination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar 'Conrad' that contributes to the expression of partial resistance to multiple P. sojae isolates.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible ('Sloan') genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22925529</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>428</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-428</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar 'Conrad' that contributes to the expression of partial resistance to multiple P. sojae isolates.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible ('Sloan') genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hehe</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wijeratne</LastName>
<ForeName>Asela</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wijeratne</LastName>
<ForeName>Saranga</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Sungwoo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Christopher G</ForeName>
<Initials>CG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>St Martin</LastName>
<ForeName>Steven K</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McHale</LastName>
<ForeName>Leah</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dorrance</LastName>
<ForeName>Anne E</ForeName>
<Initials>AE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054875" MajorTopicYN="N">Ubiquitination</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22925529</ArticleId>
<ArticleId IdType="pii">1471-2164-13-428</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-428</ArticleId>
<ArticleId IdType="pmc">PMC3443417</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 2010 Aug;121(4):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20390244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Mar;227(4):723-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Mar;14(3):369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2102820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19276192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 May;176(1):685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 21;325(5943):998-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19696351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Feb;116(4):481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18074114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D843-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):3877-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:317-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1360-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Oct;25(10):1094-1103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1912-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1996;34:479-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Jun;5(6):769-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jan;3(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1824332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Apr;104(4):1113-1118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jul;17(7):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Sep;91(1):23-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 22;543(1-3):136-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:621-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20441529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):347-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8054-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 Aug;3(2):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12194854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(2):e9030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20140256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10717008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):814-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Apr;138(4):372-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 23;17(20):1784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jun;24(6):733-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21281113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Mar;163(3):1123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2009 Mar;46(3):229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19317667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Nov;98(11):1179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:247-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Aug;70(2):560-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:593-620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8762-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12843-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11675511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):2157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132872</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
<name sortKey="Lee, Sungwoo" sort="Lee, Sungwoo" uniqKey="Lee S" first="Sungwoo" last="Lee">Sungwoo Lee</name>
<name sortKey="Mchale, Leah" sort="Mchale, Leah" uniqKey="Mchale L" first="Leah" last="Mchale">Leah Mchale</name>
<name sortKey="St Martin, Steven K" sort="St Martin, Steven K" uniqKey="St Martin S" first="Steven K" last="St Martin">Steven K. St Martin</name>
<name sortKey="Taylor, Christopher G" sort="Taylor, Christopher G" uniqKey="Taylor C" first="Christopher G" last="Taylor">Christopher G. Taylor</name>
<name sortKey="Wijeratne, Asela" sort="Wijeratne, Asela" uniqKey="Wijeratne A" first="Asela" last="Wijeratne">Asela Wijeratne</name>
<name sortKey="Wijeratne, Saranga" sort="Wijeratne, Saranga" uniqKey="Wijeratne S" first="Saranga" last="Wijeratne">Saranga Wijeratne</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Wang, Hehe" sort="Wang, Hehe" uniqKey="Wang H" first="Hehe" last="Wang">Hehe Wang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001553 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001553 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22925529
   |texte=   Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22925529" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024